Bioinspired layered materials with superior mechanical performance.

نویسندگان

  • Qunfeng Cheng
  • Lei Jiang
  • Zhiyong Tang
چکیده

Nature has inspired researchers to construct structures with ordered layers as candidates for new materials with high mechanical performance. As a prominent example, nacre, also known as mother of pearl, consists of a combination of inorganic plates (aragonite calcium carbonate, 95% by volume) and organic macromolecules (elastic biopolymer, 5% by volume) and shows a unique combination of strength and toughness. Investigations of its structure reveal that the hexagonal platelets of calcium carbonate and the amorphous biopolymer are alternatively assembled into the orderly layered structure. The delicate interface between the calcium carbonate and the biopolymer is well defined. Both the building blocks that make up these assembled layers and the interfaces between the inorganic and organic components contribute to the excellent mechanical property of natural nacre. In this Account, we summarize recent research from our group and from others on the design of bioinspired materials composed by layering various primitive materials. We focus particular attention on nanoscale carbon materials. Using several examples, we describe how the use of different combinations of layered materials leads to particular properties. Flattened double-walled carbon nanotubes (FDWCNTs) covalently cross-linked in a thermoset three-dimensional (3D) network produced the materials with the highest strength. The stiffest layered materials were generated from borate orthoester covalent bonding between adjacent graphene oxide (GO) nanosheets, and the toughest layered materials were fabricated with Al2O3 platelets and chitosan via hydrogen bonding. These new building blocks, such as FDWCNTs and GO, and the replication of the elaborate micro-/nanoscale interface of natural nacre have provided many options for developing new high performance artificial materials. The interface designs for bioinspired layered materials are generally categorized into (1) hydrogen bonding, (2) ionic bonding, and (3) covalent bonding. Using these different strategies, we can tune the materials to have specific mechanical characteristics such as high strength, excellent strain resistance, or remarkable toughness. Among these design strategies, hydrogen bonding affords soft interfaces between the inorganic plates and the organic matrix. Covalent cross-linking forms chemical bonds between the inorganic plates and the organic matrix, leading to much stronger interfaces. The interfaces formed by ionic bonding are stronger than those formed by hydrogen bonding but weaker than those formed by covalent bonding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioinspired layered composites based on flattened double-walled carbon nanotubes.

Inspired by the layered hierarchical nano- and microstructures of natural nacre, flattened double-walled carbon nanotube (FDWCNT) reinforced epoxy composites are fabricated. Impressively, the prepared composites exhibit layered structures analogous to nacre, and the FDWCNT loading can reach 70 wt%, which results in superior mechanical properties that evidently outperform other existing materials.

متن کامل

Structural Design Elements in Biological Materials: Application to Bioinspiration.

Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural appli...

متن کامل

Bioinspired green composite lotus fibers.

Owing to the growing global environmental problems, demands for environmentally friendly, fully biodegradable sustainable composites have substantially increased across various industries. Inspired by the composite structure of cocoon silk, we fabricated a fully green composite fiber (GCF) that is based on the lotus fiber (LF) and a biodegradable polymer, namely poly(vinyl alcohol) (PVA). After...

متن کامل

Learning from nature: constructing integrated graphene-based artificial nacre.

Natural nacre supplies a number of properties that can be used in designing high-performance bioinspired materials. Likewise, due to the extraordinary properties of graphene, a series of bioinspired graphene-based materials have recently been demonstrated. Compared to other approaches for constructing graphene-based materials, bioinspired concepts result in high-loading graphene, and the result...

متن کامل

Learning from nature: constructing high performance graphene-based nanocomposites

After billions of years of evolution, natural materials, such as bamboo, bone, and nacre, show unique mechanical properties, due to their intrinsic hierarchical micro/nanoscale architecture and abundant interfacial interactions. This relationship between architecture, interfacial interactions, and mechanical properties of natural materials, supplies the inspiration for constructing high perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Accounts of chemical research

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2014